Knowledge graph (KG) plays an increasingly important role in recommender systems. A recent technical trend is to develop end-to-end models founded on graph neural networks (GNNs). However, existing GNN-based models are coarse-grained in relational modeling, failing to (1) identify user-item relation at a fine-grained level of intents, and (2) exploit relation dependencies to preserve the semantics of long-range connectivity. In this study, we explore intents behind a user-item interaction by using auxiliary item knowledge, and propose a new model, Knowledge Graph-based Intent Network (KGIN). Technically, we model each intent as an attentive combination of KG relations, encouraging the independence of different intents for better model capability and interpretability. Furthermore, we devise a new information aggregation scheme for GNN, which recursively integrates the relation sequences of long-range connectivity (i.e., relational paths). This scheme allows us to distill useful information about user intents and encode them into the representations of users and items. Experimental results on three benchmark datasets show that, KGIN achieves significant improvements over the state-of-the-art methods like KGAT, KGNN-LS, and CKAN. Further analyses show that KGIN offers interpretable explanations for predictions by identifying influential intents and relational paths. The implementations are available at https://github.com/huangtinglin/Knowledge_Graph_based_Intent_Network.
翻译:知识图( KG) 在推荐者系统中发挥着越来越重要的作用。 最近的一个技术趋势是开发基于图形神经网络( GNN) 的端到端模型。 然而, 现有的基于 GNN 的模型在关系建模方面粗略地呈现出来, 未能(1) 在细微的意向水平上确定用户- 项目关系, 以及(2) 利用关系依赖性来维护远程连通的语义。 在这次研究中, 我们利用辅助项目知识来探索用户- 项目互动背后的意图, 并提出一个新的模型, 以知识图表为基础的 Intentnet 网络( KGIN ) 。 技术上, 我们以 KGNN 关系中的一种细微的组合来模拟现有的GGN 。 此外, 我们为 GNN 设计了新的信息汇总计划, 将远程连通的语义序列( e. 关联路径 ) 进行循环整合。 这个计划允许我们通过有影响的用户意图来提取有用的信息, 并把它们编码成用户和项目的演示。 在三个基准的 CAT- GNG 中, 如 KAT 预测中, 进一步的实验结果 显示, KAN- g 显示, KG 能够实现重大的SNG 定义 分析, K- 和 KG 。 显示 实现 重大的 C- gNG 的C- 和 KG 的 的 的 解释。