In this paper, we address the problem of privacy-preserving federated neural network training with $N$ users. We present Hercules, an efficient and high-precision training framework that can tolerate collusion of up to $N-1$ users. Hercules follows the POSEIDON framework proposed by Sav et al. (NDSS'21), but makes a qualitative leap in performance with the following contributions: (i) we design a novel parallel homomorphic computation method for matrix operations, which enables fast Single Instruction and Multiple Data (SIMD) operations over ciphertexts. For the multiplication of two $h\times h$ dimensional matrices, our method reduces the computation complexity from $O(h^3)$ to $O(h)$. This greatly improves the training efficiency of the neural network since the ciphertext computation is dominated by the convolution operations; (ii) we present an efficient approximation on the sign function based on the composite polynomial approximation. It is used to approximate non-polynomial functions (i.e., ReLU and max), with the optimal asymptotic complexity. Extensive experiments on various benchmark datasets (BCW, ESR, CREDIT, MNIST, SVHN, CIFAR-10 and CIFAR-100) show that compared with POSEIDON, Hercules obtains up to 4% increase in model accuracy, and up to 60$\times$ reduction in the computation and communication cost.
翻译:在本文中,我们处理与美元用户的隐私保护联合会神经网络培训问题。我们介绍赫拉克勒斯,这是一个高效和精密的培训框架,能够容忍多达1美元用户的串通。赫拉克勒斯遵循Sav等人(NDSS'21)提议的POSEIDON框架(NDSS'21),但以以下贡献为主,在业绩上取得了质的飞跃:(一)我们设计了一种新的平行的矩阵操作平行同质计算方法,使快速的单一指令和多数据(SIMD)操作能够超越密码。对于2美元Hmex矩阵的倍增,我们的方法将计算的复杂性从1美元(h)3美元降低至1美元(h)美元。这大大提高了神经网络的培训效率,因为密码的计算由卷动操作主导;(二)我们根据复合模型近似,对信号功能作了有效的近似值。它用于将非极美化功能(e.LU和3.xxxxxxx)进行。在海道上,将CFAR-FAR-SR(C、C-C-CRIS-CR-CR)中最优的精确、CRCRCRI-C-C-C-C-C-C-CRIAR-CR 和CRIAR-C-C-C-C-S-S-C-CRI-S-S-C-C-C-S-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-CR-C-CAR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-CAR-CAR-CAR-CAR-C-C-CAR-C-C-C-CAR-C-C-C-CAR-CAR-C-C-C-CAR-CAR-C-C-C-C-C-C-C-C-C-C-C