Machine learning models have been deployed in mobile networks to deal with the data from different layers to enable automated network management and intelligence on devices. To overcome high communication cost and severe privacy concerns of centralized machine learning, Federated Learning (FL) has been proposed to achieve distributed machine learning among networked devices. While the computation and communication limitation has been widely studied in FL, the impact of on-device storage on the performance of FL is still not explored. Without an efficient and effective data selection policy to filter the abundant streaming data on devices, classical FL can suffer from much longer model training time (more than $4\times$) and significant inference accuracy reduction (more than $7\%$), observed in our experiments. In this work, we take the first step to consider the online data selection for FL with limited on-device storage. We first define a new data valuation metric for data selection in FL: the projection of local gradient over an on-device data sample onto the global gradient over the data from all devices. We further design \textbf{ODE}, a framework of \textbf{O}nline \textbf{D}ata s\textbf{E}lection for FL, to coordinate networked devices to store valuable data samples collaboratively, with theoretical guarantees for speeding up model convergence and enhancing final model accuracy, simultaneously. Experimental results on one industrial task (mobile network traffic classification) and three public tasks (synthetic task, image classification, human activity recognition) show the remarkable advantages of ODE over the state-of-the-art approaches. Particularly, on the industrial dataset, ODE achieves as high as $2.5\times$ speedup of training time and $6\%$ increase in final inference accuracy, and is robust to various factors in the practical environment.


翻译:在移动网络中安装了机器学习模型,以处理不同层次的数据,从而实现自动化网络管理和装置情报的自动化管理。为了克服通信成本高和中央机器学习对隐私的严重关切,建议Freed Learning(FL)在网络设备中实现分布式机器学习。虽然计算和通信限制在FL中已经进行了广泛研究,但对FL数据选择中安装设备存储对功能的影响仍未探讨。如果没有一项高效和有效的数据选择政策,将设备上大量流数据过滤,传统FL可能遭受我们实验中观察到的模型培训时间(超过4美元)和大幅降低精度(超过7美元)。在这项工作中,我们首先考虑FL的在线数据选择,我们首先为FL数据选择确定一个新的数据估值指标:将局部数据样本的梯度投放到所有装置的数据的模型最终梯度上。我们进一步设计了Slodial cal calalal liver {ODE},一个在Otlexeural cal-liver liver cal-ligal develyal develyal develop extimeal extime dal dal dal= 3 liver dal dal daldaldaltravelyal dal dald dald dalds), 3 a surgal dreal dreal dreal dreal dal dal- daldaldaldald daldald dald daldaldal-daldaldaldald dromodaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldddaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldaldal

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
118+阅读 · 2022年4月21日
专知会员服务
161+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月17日
Arxiv
0+阅读 · 2022年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员