We develop a unifying framework for interpolatory $\mathcal{L}_2$-optimal reduced-order modeling for a wide classes of problems ranging from stationary models to parametric dynamical systems. We first show that the framework naturally covers the well-known interpolatory necessary conditions for $\mathcal{H}_2$-optimal model order reduction and leads to the interpolatory conditions for $\mathcal{H}_2 \otimes \mathcal{L}_2$-optimal model order reduction of multi-input/multi-output parametric dynamical systems. Moreover, we derive novel interpolatory optimality conditions for rational discrete least-squares minimization and for $\mathcal{L}_2$-optimal model order reduction of a class of parametric stationary models. We show that bitangential Hermite interpolation appears as the main tool for optimality across different domains. The theoretical results are illustrated on two numerical examples.
翻译:我们提出了一个适用于广泛问题类别(从稳态模型到参数化动态系统)的统一框架,用于插值 $\mathcal{L}_2$-最优简化模型。首先,我们展示了该框架自然地涵盖了 $\mathcal{H}_2$-最优模型降阶的插值必要条件,并导出了多输入/多输出参数化动态系统的 $\mathcal{H}_2 \otimes \mathcal{L}_2$-最优模型降阶的插值条件。此外,我们推导了有理离散最小二乘法和一类参数稳态模型的 $\mathcal{L}_2$-最优模型降阶插值最优性条件。我们证明了 Hermite 插值是跨不同领域优化的主要工具。理论结果在两个数值例子中得到了证明。