We propose the generative adversarial neural operator (GANO), a generative model paradigm for learning probabilities on infinite-dimensional function spaces. The natural sciences and engineering are known to have many types of data that are sampled from infinite-dimensional function spaces, where classical finite-dimensional deep generative adversarial networks (GANs) may not be directly applicable. GANO generalizes the GAN framework and allows for the sampling of functions by learning push-forward operator maps in infinite-dimensional spaces. GANO consists of two main components, a generator neural operator and a discriminator neural functional. The inputs to the generator are samples of functions from a user-specified probability measure, e.g., Gaussian random field (GRF), and the generator outputs are synthetic data functions. The input to the discriminator is either a real or synthetic data function. In this work, we instantiate GANO using the Wasserstein criterion and show how the Wasserstein loss can be computed in infinite-dimensional spaces. We empirically study GANOs in controlled cases where both input and output functions are samples from GRFs and compare its performance to the finite-dimensional counterpart GAN. We empirically study the efficacy of GANO on real-world function data of volcanic activities and show its superior performance over GAN. Furthermore, we find that for the function-based data considered, GANOs are more stable to train than GANs and require less hyperparameter optimization.
翻译:我们提议了基因对抗神经操作器(GANO),这是一个用于学习无限功能空间概率的基因模型模型(GANO),这是一个用于学习无限功能空间概率的基因模型范例;自然科学和工程已知拥有从无限功能空间抽样的多种类型的数据,这些数据来自无限功能空间,在这些空间中,古老的有限维深基因对抗网络(GANs)可能无法直接适用;GANO对GAN框架进行了概括化,并允许通过在无限空间学习推向操作器地图对功能进行取样;GANO由两个主要组成部分组成,一个发电机神经操作器和一个歧视神经功能。对生成器的投入是用户指定概率测量的功能样本,例如高斯随机场(Gaussian 随机场),而生成器输出的输出是合成数据功能。对歧视器的输入要么是真实的,要么是合成的数据功能,要么是真实的,要么是合成的。在无限空间空间中,我们用瓦瑟斯坦标准对GARstein进行快速的计算。我们在受控的案例中的输入和输出功能都是来自GRF的样本,而GAN的数值比GAN的高级的,我们更需要更精确的对GAN的运行的运行。