Trajectory prediction and generation are crucial for autonomous robots in dynamic environments. While prior research has typically focused on either prediction or generation, our approach unifies these tasks to provide a versatile framework and achieve state-of-the-art performance. While diffusion models excel in trajectory generation, their iterative sampling process is computationally intensive, hindering robotic systems' dynamic capabilities. We introduce Trajectory Conditional Flow Matching (T-CFM), a novel approach using flow matching techniques to learn a solver time-varying vector field for efficient, fast trajectory generation. T-CFM demonstrates effectiveness in adversarial tracking, real-world aircraft trajectory forecasting, and long-horizon planning, outperforming state-of-the-art baselines with 35% higher predictive accuracy and 142% improved planning performance. Crucially, T-CFM achieves up to 100$\times$ speed-up compared to diffusion models without sacrificing accuracy, enabling real-time decision making in robotics. Codebase: https://github.com/CORE-Robotics-Lab/TCFM
翻译:暂无翻译