Concurrent computation and communication (C3) is a pervasive paradigm in ML and other domains, making its performance optimization crucial. In this paper, we carefully characterize C3 in ML on GPUs, which are most widely deployed for ML training and inference. We observe that while C3 leads to performance uplifts, the uplifts are far lower than ideal speedups (serial computation and communication versus maximum of computation or communication; all times from isolated executions). C3 on average achieves only 21% of ideal speedup, this is due to known challenges of compute and memory interference between concurrent GPU kernels (that is, sharing of GPU's compute units, caches and HBM). To attain better performance for C3, first, we evaluate dual strategies of schedule prioritization and careful resource partitioning of compute units on GPUs to push performance attained with C3 (on average 42% of ideal speedup). We also provide heuristics that can guide a runtime while employing these strategies. To further enhance C3 performance, we propose to mitigate C3 interference by offloading communication tasks to the GPU's DMA engines. To this end, we build Concurrent Communication CoLlectives (ConCCL) proof-of-concepts that harness DMA engines for communication. We show how ConCCL considerably closes the gap between realized and ideal speedup for C3 (on average 72% of ideal speedup is realized, up to 1.67x speedup). Overall, our work makes a strong case for GPU DMA engine advancements to better support C3 on GPUs.
翻译:暂无翻译