We propose a unified framework to address a family of classical mixed-integer optimization problems with logically constrained decision variables, including network design, facility location, unit commitment, sparse portfolio selection, binary quadratic optimization, sparse principal analysis and sparse learning problems. These problems exhibit logical relationships between continuous and discrete variables, which are usually reformulated linearly using a big-M formulation. In this work, we challenge this longstanding modeling practice and express the logical constraints in a non-linear way. By imposing a regularization condition, we reformulate these problems as convex binary optimization problems, which are solvable using an outer-approximation procedure. In numerical experiments, we establish that a general-purpose numerical strategy, which combines cutting-plane, first-order and local search methods, solves these problems faster and at a larger scale than state-of-the-art mixed-integer linear or second-order cone methods. Our approach successfully solves network design problems with 100s of nodes and provides solutions up to 40\% better than the state-of-the-art; sparse portfolio selection problems with up to 3,200 securities compared with 400 securities for previous attempts; and sparse regression problems with up to 100,000 covariates.
翻译:我们提出一个统一框架,以解决一系列典型混合整数优化问题,这些问题涉及具有逻辑限制的决策变量,包括网络设计、设施位置、单位承诺、分散的组合选择、二元四级优化、分散的主要分析、分散的学习问题。这些问题显示了连续变量和离散变量之间的逻辑关系,这些变量通常使用大型M型配方线性重新拟订。在这项工作中,我们挑战这种长期的模型做法,并以非线性的方式表达逻辑限制。我们通过施加一种正规化条件,将这些问题重新表述为共性二进制优化问题,这些问题使用外部协调程序是可以解决的。在数字实验中,我们确立了一种通用数字战略,将切割平板、一阶和本地搜索方法结合起来,从而更快和更大规模地解决这些问题。我们的方法成功地解决了网络设计上100个节点的问题,并提供了40 ⁇ 的更好解决办法,使用外部协调程序是可解决的。我们在数字实验中,我们确立了一种通用的组合选择问题,即将切片、一阶和本地搜索方法结合起来,比以往证券的尝试要快到400万个;与以往的反复的证券的尝试要少至400个证券,而不同。