The rotation averaging problem is a fundamental task in computer vision applications. It is generally very difficult to solve due to the nonconvex rotation constraints. While a sufficient optimality condition is available in the literature, there is a lack of \yhedit{a} fast convergent algorithm to achieve stationary points. In this paper, by exploring the problem structure, we first propose a block coordinate descent (BCD)-based rotation averaging algorithm with guaranteed convergence to stationary points. Afterwards, we further propose an alternative rotation averaging algorithm by applying successive upper-bound minimization (SUM) method. The SUM-based rotation averaging algorithm can be implemented in parallel and thus is more suitable for addressing large-scale rotation averaging problems. Numerical examples verify that the proposed rotation averaging algorithms have superior convergence performance as compared to the state-of-the-art algorithm. Moreover, by checking the sufficient optimality condition, we find from extensive numerical experiments that the proposed two algorithms can achieve globally optimal solutions.
翻译:平均轮换问题是计算机视觉应用中的一项基本任务。 通常由于非convex旋转限制, 很难解决平均轮换问题。 虽然文献中有足够的最佳条件, 但缺乏达到固定点的快速趋同算法。 在本文中, 我们首先通过探索问题结构, 提出一个块协调下游( BCD) 平均轮换算法, 保证与固定点的趋同。 之后, 我们进一步建议一种替代平均轮换算法, 采用连续的上限最小化( SUM) 方法。 以 SUM为基础的平均轮换算法可以平行实施, 因而更适合解决大规模旋转平均问题。 数字实例证实, 与最先进的算法相比, 拟议的平均轮换算法具有较高的趋同性。 此外, 通过检查充分的最佳性条件, 我们从广泛的数字实验中发现, 拟议的两种算法可以实现全球最佳的解决办法 。