This paper is concerned with the error estimation of the fast multipole method (FMM) for scattering problems in 2-D. The FMM error is caused by truncating Graf's addition theorem in each step of the algorithm, including two expansions and three translations. We first give a novel bound on the truncation error of Graf's addition theorem by the limiting forms of Bessel and Neumann functions, and then estimate the error of the FMM. Explicit error bound and its convergence order are derived. The method proposed in this paper can also be used to the FMM for other problems, such as potential problems, elastostatic problems, Stokes flow problems and so on.


翻译:本文件涉及对二维散射问题的快速多极方法(FMM)的误差估计。 FMM误差是由于在算法的每个步骤中截断格拉夫增加的理论,包括两个扩展和三个译文。我们首先对格拉夫增加的理论体因贝塞尔和纽曼功能的有限形式而出现的脱轨误差进行小说约束,然后估计FMM的误差。明确误差及其趋同顺序的出处。本文中建议的方法也可以用于FMM, 解决其他问题, 如潜在问题、弹性测量问题、斯托克斯流动问题等等。

0
下载
关闭预览

相关内容

FAST:Conference on File and Storage Technologies。 Explanation:文件和存储技术会议。 Publisher:USENIX。 SIT:http://dblp.uni-trier.de/db/conf/fast/
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员