This paper develops efficient preconditioned iterative solvers for incompressible flow problems discretised by an enriched Taylor-Hood mixed approximation, in which the usual pressure space is augmented by a piecewise constant pressure to ensure local mass conservation. This enrichment process causes over-specification of the pressure, which complicates the design and implementation of efficient solvers for the resulting linear systems. We first describe the impact of this choice of pressure space on the matrices involved. Next, we show how to recover effective solvers for Stokes problems, with a preconditioner based on the singular pressure mass matrix, and for Oseen systems arising from linearised Navier-Stokes equations, by using a two-stage pressure convection-diffusion strategy. The codes used to generate the numerical results are available online.
翻译:本文针对离散化为富集的 Taylor-Hood 混合逼近的不可压流问题,开发了高效的预处理迭代求解器。富集过程导致压力被过度规定,这使得解决相应的线性系统的高效求解器的设计和实现变得复杂。我们首先描述了这种压力空间选择对所涉及矩阵的影响。接下来,我们通过使用基于奇异压力质量矩阵的预处理器为 Stokes 问题和使用由两阶段压力对流扩散策略为基础的 Oseen 系统提供了有效的求解器,从而解决了这个问题。用于生成数值结果的代码可在线获得。