We are interested in estimating the uncertainties of deep neural networks, which play an important role in many scientific and engineering problems. In this paper, we present a striking new finding that an ensemble of neural networks with the same weight initialization, trained on datasets that are shifted by a constant bias gives rise to slightly inconsistent trained models, where the differences in predictions are a strong indicator of epistemic uncertainties. Using the neural tangent kernel (NTK), we demonstrate that this phenomena occurs in part because the NTK is not shift-invariant. Since this is achieved via a trivial input transformation, we show that this behavior can therefore be approximated by training a single neural network -- using a technique that we call $\Delta-$UQ -- that estimates uncertainty around prediction by marginalizing out the effect of the biases during inference. We show that $\Delta-$UQ's uncertainty estimates are superior to many of the current methods on a variety of benchmarks -- outlier rejection, calibration under distribution shift, and sequential design optimization of black box functions. Code for $\Delta-$UQ can be accessed at https://github.com/LLNL/DeltaUQ
翻译:我们感兴趣的是估计深心神经网络的不确定性,这些网络在许多科学和工程问题中起着重要作用。在本文中,我们提出了一个惊人的新发现,即一个具有相同重量初始化作用的神经网络的集合体,在不断偏差转移的数据集方面受过培训,因此产生一些略有不一致的经过培训的模式,预测的差异是隐性不确定性的强烈指标。我们使用神经相色内核(NTK)表明,这种现象之所以发生,部分是因为NTK不是变换的。由于这是通过一个微小的投入转换实现的,因此我们表明,通过培训一个单一神经网络 -- -- 使用我们称之为$\Delta-$UQ的技术 -- -- 来估计预测的不确定性,通过在发酵过程中将偏差效应边缘化。我们表明,$\Delta-$UQ的不确定性估计优于目前关于各种基准的方法中的许多方法 -- -- 外部排斥、在分布变换中校准,以及黑盒功能的顺序设计优化,我们可以在 $\Delta/DLGUQ上查看。