We present an O(n^6 ) linear programming model for the traveling salesman (TSP) and quadratic assignment (QAP) problems. The basic model is developed within the framework of the TSP. It does not involve the city-to-city variables-based, traditional TSP polytope referred to in the literature as "the TSP polytope." We do not model explicit Hamiltonian cycles of the cities. Instead, we use a time-dependent abstraction of TSP tours and develop a direct extended formulation of the linear assignment problem (LAP) polytope. The model is exact in the sense that it has integral extreme points which are in one-to-one correspondence with TSP tours. It can be solved optimally using any linear programming (LP) solver, hence offering a new (incidental) proof of the equality of the computational complexity classes "P" and "NP." The extensions of the model to the time-dependent traveling salesman problem (TDTSP) as well as the quadratic assignment problem (QAP) are straightforward. The reasons for the non-applicability of existing negative extended formulations results for "the TSP polytope" to the model in this paper as well as our software implementation and the computational experimentation we conducted are briefly discussed.
翻译:我们为旅行销售员(TSP)和二次派任(QAP)问题提出了一个O(n ⁇ 6)线性编程模型。基本模型是在TSP框架内开发的。基本模型不涉及文献中称为“TSP 聚点”的基于城市变数的传统 TSP 聚点。我们没有为城市的计算复杂等级“P”和“NP”提供明确的汉密尔顿周期模型。相反,我们使用基于时间的TSP旅行的抽取,并开发了线性派任问题(LAP)多功能的直接扩展配方。该模型非常精确,因为它具有与TSP旅行的一对一通信中的整体极端点。它可以最佳地使用任何线性编程(LP)解答器来解决,从而提供一个新的(局部)证据,证明计算复杂等级“P”和“NP”之间的平等。我们根据时间将模型扩展成旅行推销员问题(TDTSP)以及二次派派指派问题(QAP)是直接的。在与TSP旅行旅行旅行的一对一对一通信的通信中,这种模型无法应用的极端点点是直接的。在目前软体化的软化实验中讨论的软模模模版设计结果。