Several works have proven that finetuning is an applicable approach for debiasing contextualized word embeddings. Similarly, discrete prompts with semantic meanings have shown to be effective in debiasing tasks. With unfixed mathematical representation at the token level, continuous prompts usually surpass discrete ones at providing a pre-trained language model (PLM) with additional task-specific information. Despite this, relatively few efforts have been made to debias PLMs by prompt tuning with continuous prompts compared to its discrete counterpart. Furthermore, for most debiasing methods that alter a PLM's original parameters, a major problem is the need to not only decrease the bias in the PLM but also to ensure that the PLM does not lose its representation ability. Finetuning methods typically have a hard time maintaining this balance, as they tend to violently remove meanings of attribute words. In this paper, we propose ADEPT, a method to debias PLMs using prompt tuning while maintaining the delicate balance between removing biases and ensuring representation ability. To achieve this, we propose a new training criterion inspired by manifold learning and equip it with an explicit debiasing term to optimize prompt tuning. In addition, we conduct several experiments with regard to the reliability, quality, and quantity of a previously proposed attribute training corpus in order to obtain a clearer prototype of a certain attribute, which indicates the attribute's position and relative distances to other words on the manifold. We evaluate ADEPT on several widely acknowledged debiasing benchmarks and downstream tasks, and find that it achieves competitive results while maintaining (and in some cases even improving) the PLM's representation ability. We further visualize words' correlation before and after debiasing a PLM, and give some possible explanations for the visible effects.


翻译:一些作品证明微调是用来降低背景化字嵌入内容的可适用方法。 同样,具有语义含义的离散提示也证明在贬低任务方面是有效的。由于象征性的不固定数学代表制,连续提示通常超过离散语言,提供经过预先训练的语言模式(PLM),并附加特定任务的信息。尽管如此,通过与离散的对应方进行连续调换,降低PLM(PLM)是一个可适用的方法。此外,对于改变PLM原有参数的多数贬低方法,一个主要问题是不仅需要降低PLM的偏差性,而且还需要确保PLM的代表性不丧失。 微调方法通常会超过离散的语言,因为提供事先经过训练的语言模式(PLM)和额外的信息。我们提出了ACTPT(ACTPT)方法,通过快速调换调来降低PLM(PM),同时在消除偏差和确保代表性能力之间保持微妙的平衡。为了实现这一点,我们提议了一个新的培训标准,我们提议在进行一系列的相对性学习和精确性实验后, 将某些属性提升其排序,然后调整。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
14+阅读 · 2022年5月6日
Conditional Prompt Learning for Vision-Language Models
Arxiv
13+阅读 · 2022年3月10日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
5+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员