Task-oriented image semantic communication is a new communication paradigm, which aims to transmit semantics for artificial intelligent (AI) tasks while ignoring the reconstruction quality of the images. However, in some applications, such as autonomous driving, both image reconstruction quality and the performance of the followed AI tasks must be simultaneously considered. To tackle this challenge, this paper proposes a task-oriented semantic communication scheme with semantic reconstruction (TOSC-SR). Its main goal is to simultaneously minimize pixel-level and task-relevant semantic-level distortion during communications under a certain rate, which formulates a new rate-distortion optimization problem. To successfully measure the loss at the semantic level, a new form of semantic distortion measured by the mutual information between the semantic-reconstructed images and the task labels is proposed. Then, we derive an analytical solution for the formulated problem, where the self-consistent equations of the problem are obtained to determine the optimal mapping of the source and the semantic-reconstructed images. To implement TOSC-SR, we further obtain an extended form of rate-distortion form based on the variational approximation of mutual information, which is applicable to multiple AI tasks. Experimental results show that the proposed approach outperforms the traditional JPEG, JPEG2000, BPG, VVC-based image communication systems and deep learning based benchmarks in terms of image reconstruction quality, AI task performance, and multi-task generalization ability.


翻译:以任务为导向的图像语义通信是一种新的通信模式,目的是在忽略图像重建质量的同时,为人工智能(AI)任务传递语义,同时忽略图像重建质量;然而,在诸如自主驱动等一些应用中,必须同时考虑图像重建质量和随后AI任务业绩的绩效。为了应对这一挑战,本文件建议了一个以语义重建(TOSC-SR)为主的任务导向语义通信计划。其主要目标是在通信过程中,根据某种速度,将像素水平和任务相关的语义层面上的扭曲同时最小化,从而形成一个新的比例扭曲优化问题。要成功地测量语义层面的损失,在语义层面,一种由语义再重建图像和任务标签之间的相互信息测量的语义扭曲的新形式。然后,我们为所拟订的问题提出一个分析解决方案,在此问题上,获得自相兼容的方程式,以便确定源和语义再配置图像的优化绘图,从而形成一个新的比例扭曲优化优化的图像。为了实施方言义层面,我们进一步获得一种由语言-情感-调层次的教学方法的扩展形式,以可应用的汇率再演化方式显示基于共同的图像格式的版本。

0
下载
关闭预览

相关内容

互信息(Mutual Information)是信息论里一种有用的信息度量,它可以看成是一个随机变量中包含的关于另一个随机变量的信息量,或者说是一个随机变量由于已知另一个随机变量而减少的不肯定性.
专知会员服务
25+阅读 · 2021年4月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月2日
Arxiv
29+阅读 · 2021年11月2日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员