Federated learning (FL) provides an emerging approach for collaboratively training semantic encoder/decoder models of semantic communication systems, without private user data leaving the devices. Most existing studies on trustworthy FL aim to eliminate data poisoning threats that are produced by malicious clients, but in many cases, eliminating model poisoning attacks brought by fake servers is also an important objective. In this paper, a certificateless authentication-based trustworthy federated learning (CATFL) framework is proposed, which mutually authenticates the identity of clients and server. In CATFL, each client verifies the server's signature information before accepting the delivered global model to ensure that the global model is not delivered by false servers. On the contrary, the server also verifies the server's signature information before accepting the delivered model updates to ensure that they are submitted by authorized clients. Compared to PKI-based methods, the CATFL can avoid too high certificate management overheads. Meanwhile, the anonymity of clients shields data poisoning attacks, while real-name registration may suffer from user-specific privacy leakage risks. Therefore, a pseudonym generation strategy is also presented in CATFL to achieve a trade-off between identity traceability and user anonymity, which is essential to conditionally prevent from user-specific privacy leakage. Theoretical security analysis and evaluation results validate the superiority of CATFL.
翻译:联邦学习(FL)为协作培训语义通信系统的语义编码/代碼模型提供了一种新兴的方法,而没有私人用户数据离开设备,对语义通信系统的语义编码/代碼模型进行协作培训,而没有私人用户数据离开设备,大多数关于可信FL的现有研究都旨在消除恶意客户产生的数据中毒威胁,但在许多情况下,消除假服务器带来的模式中毒袭击也是一个重要目标。在本文件中,提议了一个无认证的、基于认证的可靠联邦学习(CATFL)框架,该框架对客户和服务器的身份进行相互认证。在CATFL中,每个客户在接受已交付的全球模型之前核实服务器的签名信息,以确保全球模型不由假服务器提供。相反,服务器在接受已交付的模型更新之前还要核实服务器的签名信息,以确保这些信息由授权客户提交。与基于PKI的方法相比,CATFL可以避免过高的证书管理管理间接费用。与此同时,客户的匿名保护数据中毒袭击可能因用户特有的隐私渗漏风险而受到影响。因此,在CATFLL推出的假ny生成战略,从而无法实现基本的保密性保密性安全性安全性、保密性对用户的保密性对用户进行可靠的用户进行身份追踪性评估。