Federated learning (FL) provides an emerging approach for collaboratively training semantic encoder/decoder models of semantic communication systems, without private user data leaving the devices. Most existing studies on trustworthy FL aim to eliminate data poisoning threats that are produced by malicious clients, but in many cases, eliminating model poisoning attacks brought by fake servers is also an important objective. In this paper, a certificateless authentication-based trustworthy federated learning (CATFL) framework is proposed, which mutually authenticates the identity of clients and server. In CATFL, each client verifies the server's signature information before accepting the delivered global model to ensure that the global model is not delivered by false servers. On the contrary, the server also verifies the server's signature information before accepting the delivered model updates to ensure that they are submitted by authorized clients. Compared to PKI-based methods, the CATFL can avoid too high certificate management overheads. Meanwhile, the anonymity of clients shields data poisoning attacks, while real-name registration may suffer from user-specific privacy leakage risks. Therefore, a pseudonym generation strategy is also presented in CATFL to achieve a trade-off between identity traceability and user anonymity, which is essential to conditionally prevent from user-specific privacy leakage. Theoretical security analysis and evaluation results validate the superiority of CATFL.


翻译:联邦学习(FL)为协作培训语义通信系统的语义编码/代碼模型提供了一种新兴的方法,而没有私人用户数据离开设备,对语义通信系统的语义编码/代碼模型进行协作培训,而没有私人用户数据离开设备,大多数关于可信FL的现有研究都旨在消除恶意客户产生的数据中毒威胁,但在许多情况下,消除假服务器带来的模式中毒袭击也是一个重要目标。在本文件中,提议了一个无认证的、基于认证的可靠联邦学习(CATFL)框架,该框架对客户和服务器的身份进行相互认证。在CATFL中,每个客户在接受已交付的全球模型之前核实服务器的签名信息,以确保全球模型不由假服务器提供。相反,服务器在接受已交付的模型更新之前还要核实服务器的签名信息,以确保这些信息由授权客户提交。与基于PKI的方法相比,CATFL可以避免过高的证书管理管理间接费用。与此同时,客户的匿名保护数据中毒袭击可能因用户特有的隐私渗漏风险而受到影响。因此,在CATFLL推出的假ny生成战略,从而无法实现基本的保密性保密性安全性安全性、保密性对用户的保密性对用户进行可靠的用户进行身份追踪性评估。

0
下载
关闭预览

相关内容

服务器,也称伺服器,是提供计算服务的设备。由于服务器需要响应服务请求,并进行处理,因此一般来说服务器应具备承担服务并且保障服务的能力。
服务器的构成包括处理器、硬盘、内存、系统总线等,和通用的计算机架构类似,但是由于需要提供高可靠的服务,因此在处理能力、稳定性、可靠性、安全性、可扩展性、可管理性等方面要求较高。
专知会员服务
45+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
19+阅读 · 2022年7月29日
VIP会员
相关VIP内容
专知会员服务
45+阅读 · 2020年10月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员