This paper introduces a simple and tractable sieve estimation of semiparametric conditional factor models with latent factors. We establish large-$N$-asymptotic properties of the estimators and the tests without requiring large $T$. We also develop a simple bootstrap procedure for conducting inference about the conditional pricing errors as well as the shapes of the factor loadings functions. These results enable us to estimate conditional factor structure of a large set of individual assets by utilizing arbitrary nonlinear functions of a number of characteristics without the need to pre-specify the factors, while allowing us to disentangle the characteristics' role in capturing factor betas from alphas (i.e., undiversifiable risk from mispricing). We apply these methods to the cross-section of individual U.S. stock returns and find strong evidence of large nonzero pricing errors that combine to produce arbitrage portfolios with Sharpe ratios above 3.
翻译:本文介绍了对带有潜在因素的半参数有条件要素模型的简单和可移植的筛选估计。我们建立了估计值和测试的大型-N$安全性特性,而不需要大额T美元。我们还开发了一个简单的陷阱程序,用于对有条件定价错误以及要素负荷功能的形状进行推断。这些结果使我们能够通过使用一些特性的任意非线性功能来估计大量个体资产的有条件要素结构,而不必预先说明这些要素,同时使我们能够分解这些特征在从α中捕获要素贝贝(即无法分解的错误定价风险)方面的作用。我们将这些方法应用于单个美国股票回报的交叉部分,并找到大量非零价格错误的有力证据,这些错误合在一起产生具有3以上夏普比率的套利证券组合。