In this paper we treat statistical inference for an intrinsic wavelet estimator of curves of symmetric positive definite (SPD) matrices in a log-Euclidean manifold. This estimator preserves positive-definiteness and enjoys permutation-equivariance, which is particularly relevant for covariance matrices. Our second-generation wavelet estimator is based on average-interpolation and allows the same powerful properties, including fast algorithms, known from nonparametric curve estimation with wavelets in standard Euclidean set-ups. The core of our work is the proposition of confidence sets for our high-level wavelet estimator in a non-Euclidean geometry. We derive asymptotic normality of this estimator, including explicit expressions of its asymptotic variance. This opens the door for constructing asymptotic confidence regions which we compare with our proposed bootstrap scheme for inference. Detailed numerical simulations confirm the appropriateness of our suggested inference schemes.
翻译:在本文中,我们处理对正对称正数(SPD)矩阵曲线内在波盘估计值的统计推论。 这个测算器保存正- 无限性, 并享有异差- 等差性, 这对于共变矩阵特别相关。 我们第二代波子估计值以平均内插为基础, 允许同样强大的属性, 包括快速算法, 以标准 Euclidean 设置中的波子对非对称曲线进行估算。 我们工作的核心是提出我们高水平波点测算器在非欧几里德地测量中的信任度。 我们从中得出这个测算器的无常态性常态性, 包括表态差异的清晰表达。 这打开了建设无损信任区的大门, 我们与我们提议的测测测测的推论计划相比, 详细的数字模拟证实了我们建议的推算法的恰当性。