Multilingual topic models enable document analysis across languages through coherent multilingual summaries of the data. However, there is no standard and effective metric to evaluate the quality of multilingual topics. We introduce a new intrinsic evaluation of multilingual topic models that correlates well with human judgments of multilingual topic coherence as well as performance in downstream applications. Importantly, we also study evaluation for low-resource languages. Because standard metrics fail to accurately measure topic quality when robust external resources are unavailable, we propose an adaptation model that improves the accuracy and reliability of these metrics in low-resource settings.


翻译:多语文专题模型能够通过连贯的多语种数据摘要进行不同语文的文件分析,然而,没有标准和有效的衡量标准来评价多语种专题的质量。我们引入了对多语种专题模型的新的内在评价,这种评价与人类对多语种专题一致性的判断以及下游应用的绩效密切相关。重要的是,我们还研究低资源语言的评价。由于标准指标在缺乏强有力的外部资源时无法准确衡量专题质量,我们提出了一个适应模型,以提高这些指标在低资源环境中的准确性和可靠性。

4
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
经济学中的数据科学,Data Science in Economics,附22页pdf
专知会员服务
35+阅读 · 2020年4月1日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Arxiv
4+阅读 · 2019年9月26日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
5+阅读 · 2017年12月29日
Arxiv
3+阅读 · 2017年12月18日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员