A proper form of data characterization can guide the process of learning-algorithm selection and model-performance estimation. The field of meta-learning has provided a rich body of work describing effective forms of data characterization using different families of meta-features (statistical, model-based, information-theoretic, topological, etc.). In this paper, we start with the abundant set of existing meta-features and propose a method to induce new abstract meta-features as latent variables in a deep neural network. We discuss the pitfalls of using traditional meta-features directly and argue for the importance of learning high-level task properties. We demonstrate our methodology using a deep neural network as a feature extractor. We demonstrate that 1) induced meta-models mapping abstract meta-features to generalization performance outperform other methods by ~18% on average, and 2) abstract meta-features attain high feature-relevance scores.


翻译:适当的数据定性形式可以指导学习-算法选择和模型-性能估计过程。元学习领域提供了大量的工作内容,介绍了利用不同种类的元物(统计、模型、信息理论、地形等)来描述数据定性的有效形式。在本文中,我们从丰富的现有元物开始,提出在深层神经网络中将新的抽象元物作为潜在变数的方法。我们讨论了直接使用传统元物的缺陷,并主张学习高层次任务特性的重要性。我们用深层神经网络来展示我们的方法,作为特征提取器。我们证明:(1) 诱导元模型绘制抽象的元物图,将性优于其他方法,平均为~18%;和(2) 抽象元物取得高特征相关性分数。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
53+阅读 · 2019年12月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
13+阅读 · 2020年4月12日
Contrastive Representation Distillation
Arxiv
5+阅读 · 2019年10月23日
Arxiv
10+阅读 · 2018年3月22日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员