Time series imputation is a fundamental task for understanding time series with missing data. Existing imputation methods often rely on recurrent models such as RNNs and ordinary differential equations, both of which suffer from the error compounding problems of recurrent models. In this work, we view the imputation task from the perspective of permutation equivariant modeling of sets and propose a novel imputation model called NRTSI without any recurrent modules. Taking advantage of the permutation equivariant nature of NRTSI, we design a principled and efficient hierarchical imputation procedure. NRTSI can easily handle irregularly-sampled data, perform multiple-mode stochastic imputation, and handle the scenario where dimensions are partially observed. We show that NRTSI achieves state-of-the-art performance across a wide range of commonly used time series imputation benchmarks.
翻译:时间序列估算是理解缺少数据的时间序列的一项基本任务。 现有的估算方法往往依赖经常性模型,如RNNs和普通差分方程式,这两种模型都存在重复型模型的错误和问题。 在这项工作中,我们从各组集的变换等式建模的角度看待估算任务,并提议了一个名为NRTSI的新型估算模型,没有任何重复模块。我们利用NRTSI的变换等式性质,设计了一个有原则的高效等级估算程序。 NRTSI可以很容易地处理不规则抽样的数据,进行多模式的随机估算,并处理部分观察到维度的情况。我们显示,NRTSI在广泛使用的时间序列估算基准中达到了最新水平。