Diffusion tensor imaging (DTI) is a prevalent neuroimaging tool in analyzing the anatomical structure. The distinguishing feature of DTI is that the voxel-wise variable is a 3x3 positive definite matrix other than a scalar, describing the diffusion process at the voxel. Recently, several statistical methods have been proposed to analyze the DTI data. This paper focuses on the statistical inference of eigenvalues of DTI because it provides more transparent clinical interpretations. However, the statistical inference of eigenvalues is statistically challenging because few treat these responses as random eigenvalues. In our paper, we rely on the distribution of the Wishart matrix's eigenvalues to model the random eigenvalues. A hierarchical model which captures the eigenvalues' randomness and spatial auto-correlation is proposed to infer the local covariate effects. The Monte-Carlo Expectation-Maximization algorithm is implemented for parameter estimation. Both simulation studies and application to IXI data-set are used to demonstrate our proposal. The results show that our proposal is more proper in analyzing auto-correlated random eigenvalues compared to alternatives.


翻译:在分析解剖结构时,解剖抗拉成像(DTI)是一个流行的神经成像工具。DTI的显著特征是,从 voxel 角度的变量是一个3x3正确定矩阵,而不是一个标度,描述 voxel 的传播过程。最近,提出了几种统计方法来分析DTI 数据。本文件侧重于DTI 光值的统计推论,因为它提供了更透明的临床解释。但是,由于很少有人将这些反应作为随机电子值对待,因此对电子值的统计推论具有统计上的挑战性。在我们的论文中,我们依靠Wishart 矩阵的光值的分布来模拟随机电子值。提出了一种分级模型来捕捉天值的随机性和空间自动调节关系,以推断本地变异效应。在参数估计中采用了蒙特-卡尔洛-预期-氧化算法。在IXI 数据集的模拟研究和应用中都用来展示我们的提案。结果显示,在比较的替代物中,我们的建议是比较性数值的更正确的。结果显示,与自动分析结果是比较的。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月12日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
153+阅读 · 2020年8月7日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
《自然》(20190829出版)一周论文导读
科学网
6+阅读 · 2019年8月30日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员