Diffusion tensor imaging (DTI) is a prevalent neuroimaging tool in analyzing the anatomical structure. The distinguishing feature of DTI is that the voxel-wise variable is a 3x3 positive definite matrix other than a scalar, describing the diffusion process at the voxel. Recently, several statistical methods have been proposed to analyze the DTI data. This paper focuses on the statistical inference of eigenvalues of DTI because it provides more transparent clinical interpretations. However, the statistical inference of eigenvalues is statistically challenging because few treat these responses as random eigenvalues. In our paper, we rely on the distribution of the Wishart matrix's eigenvalues to model the random eigenvalues. A hierarchical model which captures the eigenvalues' randomness and spatial auto-correlation is proposed to infer the local covariate effects. The Monte-Carlo Expectation-Maximization algorithm is implemented for parameter estimation. Both simulation studies and application to IXI data-set are used to demonstrate our proposal. The results show that our proposal is more proper in analyzing auto-correlated random eigenvalues compared to alternatives.
翻译:在分析解剖结构时,解剖抗拉成像(DTI)是一个流行的神经成像工具。DTI的显著特征是,从 voxel 角度的变量是一个3x3正确定矩阵,而不是一个标度,描述 voxel 的传播过程。最近,提出了几种统计方法来分析DTI 数据。本文件侧重于DTI 光值的统计推论,因为它提供了更透明的临床解释。但是,由于很少有人将这些反应作为随机电子值对待,因此对电子值的统计推论具有统计上的挑战性。在我们的论文中,我们依靠Wishart 矩阵的光值的分布来模拟随机电子值。提出了一种分级模型来捕捉天值的随机性和空间自动调节关系,以推断本地变异效应。在参数估计中采用了蒙特-卡尔洛-预期-氧化算法。在IXI 数据集的模拟研究和应用中都用来展示我们的提案。结果显示,在比较的替代物中,我们的建议是比较性数值的更正确的。结果显示,与自动分析结果是比较的。