Simulations of large-scale dynamical systems require expensive computations. Low-dimensional parametrization of high-dimensional states such as Proper Orthogonal Decomposition (POD) can be a solution to lessen the burdens by providing a certain compromise between accuracy and model complexity. However, for really low-dimensional parametrizations (for example for controller design) linear methods like the POD come to their natural limits so that nonlinear approaches will be the methods of choice. In this work we propose a convolutional autoencoder (CAE) consisting of a nonlinear encoder and an affine linear decoder and consider combinations with k-means clustering for improved encoding performance. The proposed set of methods is compared to the standard POD approach in two cylinder-wake scenarios modeled by the incompressible Navier-Stokes equations.
翻译:大型动态系统的模拟需要昂贵的计算。 诸如正正正正正正正正分解( POD) 等高维状态的低维半称化可以通过在精确度和模型复杂度之间提供某种折中来减轻负担。 但是,对于真正低维的对称(例如控制器设计),像POD这样的线性方法会达到其自然极限,因此非线性方法将是选择的方法。 在这项工作中,我们提议由非线性编码器和直线解码器组成的共振自动编码器( CAE ), 并考虑将之与K- means集相结合, 以提高编码性能。 这套拟议方法与以不可压缩的纳维-斯托克斯方程式为模型的两种圆柱形情景中的标准 POD 方法相比较。