Two-time-scale stochastic approximation, a generalized version of the popular stochastic approximation, has found broad applications in many areas including stochastic control, optimization, and machine learning. Despite of its popularity, theoretical guarantees of this method, especially its finite-time performance, are mostly achieved for the linear case while the results for the nonlinear counterpart are very sparse. Motivated by the classic control theory for singularly perturbed systems, we study in this paper the asymptotic convergence and finite-time analysis of the nonlinear two-time-scale stochastic approximation. Under some fairly standard assumptions, we provide a formula that characterizes the rate of convergence of the main iterates to the desired solutions. In particular, we show that the method achieves a convergence in expectation at a rate $\mathcal{O}(1/k^{2/3})$, where $k$ is the number of iterations. The key idea in our analysis is to properly choose the two step sizes to characterize the coupling between the fast and slow-time-scale iterates.


翻译:流行的随机近似(通用版的流行随机近似)在很多领域都得到了广泛的应用,包括随机控制、优化和机器学习。尽管它很受欢迎,但这一方法的理论保障,特别是其有限时间性能,大部分是线性案例的理论保障,而非线性对应方的结果则非常稀少。根据对奇特扰动系统的经典控制理论,我们在本文件中研究非线性双级随机近近近近的无时间趋同和有限时间分析。根据一些相当标准的假设,我们提供了一种公式,说明主要试样与理想解决办法的趋同率。特别是,我们表明,该方法达到了预期的趋同率($\mathcal{O}(1/k ⁇ 2/3})$,其中美元是迭代数。我们分析的关键思想是正确选择两步尺大小来描述快速和慢时相交的交点。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
53+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员