In this work, we study the gradient projection method for solving a class of stochastic control problems by using a mesh free approximation approach to implement spatial dimension approximation. Our main contribution is to extend the existing gradient projection method to moderate high-dimensional space. The moving least square method and the general radial basis function interpolation method are introduced as showcase methods to demonstrate our computational framework, and rigorous numerical analysis is provided to prove the convergence of our meshfree approximation approach. We also present several numerical experiments to validate the theoretical results of our approach and demonstrate the performance meshfree approximation in solving stochastic optimal control problems.
翻译:在这项工作中,我们通过使用网状自由近似法来实施空间维度近似法,研究解决一类随机控制问题的梯度预测方法。我们的主要贡献是将现有的梯度预测方法扩大到中度高维空间。移动的最小平方法和一般弧基函数内插法作为展示我们计算框架的示范方法,并提供严格的数字分析,以证明我们无网状近似法的趋同性。我们还进行了若干次数字实验,以验证我们方法的理论结果,并展示在解决随机最佳控制问题时的无网状近似性。