In this dissertation we examine the relationships between the several hierarchies, including the complexity, $\mathrm{LUA}$ (Linearly Universal Avoidance), and shift complexity hierarchies, with an eye towards quantitative bounds on growth rates therein. We show that for suitable $f$ and $p$, there are $q$ and $g$ such that $\mathrm{LUA}(q) \leq_\mathrm{s} \mathrm{COMPLEX}(f)$ and $\mathrm{COMPLEX}(g) \leq_\mathrm{s} \mathrm{LUA}(p)$, as well as quantify the growth rates of $q$ and $g$. In the opposite direction, we show that for certain sub-identical $f$ satisfying $\lim_{n \to \infty}{f(n)/n}=1$ there is a $q$ such that $\mathrm{COMPLEX}(f) \leq_\mathrm{w} \mathrm{LUA}(q)$, and for certain fast-growing $p$ there is a $g$ such that $\mathrm{LUA}(p) \leq_\mathrm{s} \mathrm{COMPLEX}(g)$, as well as quantify the growth rates of $q$ and $g$. Concerning shift complexity, explicit bounds are given on how slow-growing $q$ must be for any member of $\rm{LUA}(q)$ to compute $\delta$-shift complex sequences. Motivated by the complexity hierarchy, we generalize the notion of shift complexity to consider sequences $X$ satisfying $\operatorname{KP}(\tau) \geq f(|\tau|) - O(1)$ for all substrings $\tau$ of $X$ where $f$ is any order function. We show that for sufficiently slow-growing $f$, $f$-shift complex sequences can be uniformly computed by $g$-complex sequences, where $g$ grows slightly faster than $f$. The structure of the $\mathrm{LUA}$ hierarchy is examined using bushy tree forcing, with the main result being that for any order function $p$, there is a slow-growing order function $q$ such that $\mathrm{LUA}(p)$ and $\mathrm{LUA}(q)$ are weakly incomparable. Using this, we prove new results about the filter of the weak degrees of deep nonempty $\Pi^0_1$ classes and the connection between the shift complexity and $\mathrm{LUA}$ hierarchies.


翻译:在此分解中, 我们检查了几个等级之间的关系, 包括复杂性, $\ mathrm{ LUA} 美元( 远为普遍避免) 和转换复杂等级, 并关注其增长率的量化约束值。 我们显示, 对于合适的美元和美元, 有美元和美元。 与此相反, 我们显示, 对于某些以美元为单位的平价 美元 满意 $\ leq\\ materm} 美元\ mathrms} (f) 美元 和 $ mathr$( 远为美元 远为美元) 。 对于一个以美元为单位的( 平价), 任何以美元为单位的( 平价 美元) 或以美元为单位的( 平价), 任何以美元为单位的( 以美元为单位的( 现为美元) 。

0
下载
关闭预览

相关内容

Lua 是一门轻量而快速的脚本语言,功能在高级动态语言中十分完备,对 C API、嵌入式开发以及线程安全的 VM 的支持,使其非常流行。
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年6月11日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
0+阅读 · 2022年6月8日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员