It is well-known that Resolution proofs can be efficiently simulated by Sherali-Adams (SA) proofs. We show, however, that any such simulation needs to exploit huge coefficients: Resolution cannot be efficiently simulated by SA when the coefficients are written in unary. We also show that Reversible Resolution (a variant of MaxSAT Resolution) cannot be efficiently simulated by Nullstellensatz (NS). These results have consequences for total NP search problems. First, we characterise the classes PPADS, PPAD, SOPL by unary-SA, unary-NS, and Reversible Resolution, respectively. Second, we show that, relative to an oracle, PLS $\not\subseteq$ PPP, SOPL $\not\subseteq$ PPA, and EOPL $\not\subseteq$ UEOPL. In particular, together with prior work, this gives a complete picture of the black-box relationships between all classical TFNP classes introduced in the 1990s.
翻译:众所周知, 分辨率证据可以通过 Sherali- Adams (SA) 证据来有效模拟。 但是, 我们显示, 任何这样的模拟都需要利用巨大的系数: 当系数以单数写时, 分辨率不能由SA 有效模拟。 我们还显示, Nullstellensatz (NS) 无法有效模拟可反正分辨率( MaxSAT 分辨率的变异物) 。 这些结果对NP 搜索总问题有影响。 首先, 我们分别描述PPADS、 PPADD、 SOPL 、 unary-SA、 unary- NS 和 reversibable 分辨率的等级。 第二, 我们显示, 相对于一个星标, PLS $\ not\ subseqeq$ PPA, SOPL $\ not\ subseqeq$ UEOPL 和 EOPL $\ nont\subseqeq$ UEPL 。 特别是, 与先前的工作一起, 完整地说明了1990年代引入的所有古典TNP 级之间的黑箱关系。