Variable selection is a classic problem in statistics. In this paper, we consider a Bayes variable selection problem based on spike-and-slab prior with mixed normal distribution proposed by Ro\v{c}kov\'a and George (2014). Motivated by Ormerod et al.(2017), we use the variational inference method to solve the Bayesian problem instead of MCMC. Like Ormerod et al.(2017), we also explain how the sparsity estimator is induced, and under certain mild assumptions, we also prove the consistent and asymptotic results.
翻译:变量选择是一个典型的统计问题。 在本文中, 我们考虑贝耶斯变量选择问题, 其依据是先前的钉和板, Ro\v{c}kov\'a 和 George (2014年) 提议的混合正常分布。 受Ormerod 等人( 2017年) 的激励, 我们使用变式推论方法解决巴伊斯人的问题, 而不是 MCMC 。 和 Omerod 等人( 2017年) 一样, 我们还解释了如何诱发松散测算仪, 在某些温和假设下, 我们还证明了一致和无损的结果 。