We use Bayesian model selection paradigms, such as group least absolute shrinkage and selection operator priors, to facilitate generalized additive model selection. Our approach allows for the effects of continuous predictors to be categorized as either zero, linear or non-linear. Employment of carefully tailored auxiliary variables results in Gibbsian Markov chain Monte Carlo schemes for practical implementation of the approach. In addition, mean field variational algorithms with closed form updates are obtained. Whilst not as accurate, this fast variational option enhances scalability to very large data sets. A package in the R language aids use in practice.
翻译:我们利用贝叶西亚模式选择模式模式,如集团最小绝对收缩和选择操作员前科等,为通用添加型模型选择提供便利。我们的方法允许将连续预测器的影响分为零、线性或非线性。在Gibbbian Markov连锁蒙特卡洛计划中,采用精心定制的辅助变量结果,以实际实施这一方法。此外,还获得了具有封闭形式更新的外地平均变异算法。虽然不准确,但这种快速变异选项提高了向非常大数据集的可缩放性。R语言辅助工具在实践中使用的软件包。