In an observational study, it is common to leverage known null effect to detect bias. One such strategy is to set aside a placebo sample -- a subset of data immune from the hypothesized cause-and-effect relationship. Existence of an effect in the placebo sample raises concern of unmeasured confounding bias while absence of it corroborates the causal conclusion. This paper establishes a formal framework for using a placebo sample to detect and remove bias. We state identification assumption, and develop estimation and inference methods based on outcome regression, inverse probability weighting, and doubly-robust approaches. Simulation studies and an empirical application illustrate the finite-sample performance of the proposed methods.
翻译:在一项观察研究中,通常会利用已知的无效效应来发现偏差。这种战略之一是将安慰剂样本 -- -- 不受假定大小因果关系影响的一组数据 -- -- 放在一边。安慰剂样本中存在某种影响,引起人们对未测得的混淆偏见的关切,而缺乏这种影响则证实了因果关系结论。本文为使用安慰剂样本来检测和消除偏差确立了一个正式框架。我们陈述了鉴别假设,并根据结果回归、反概率权重和双曲线法制定了估计和推论方法。模拟研究和一项经验应用说明了拟议方法的有限性能。