Despite great recent advances achieved by deep neural networks (DNNs), they are often vulnerable to adversarial attacks. Intensive research efforts have been made to improve the robustness of DNNs; however, most empirical defenses can be adaptively attacked again, and the theoretically certified robustness is limited, especially on large-scale datasets. One potential root cause of such vulnerabilities for DNNs is that although they have demonstrated powerful expressiveness, they lack the reasoning ability to make robust and reliable predictions. In this paper, we aim to integrate domain knowledge to enable robust learning with the reasoning paradigm. In particular, we propose a certifiably robust learning with reasoning pipeline (CARE), which consists of a learning component and a reasoning component. Concretely, we use a set of standard DNNs to serve as the learning component to make semantic predictions, and we leverage the probabilistic graphical models, such as Markov logic networks (MLN), to serve as the reasoning component to enable knowledge/logic reasoning. However, it is known that the exact inference of MLN (reasoning) is #P-complete, which limits the scalability of the pipeline. To this end, we propose to approximate the MLN inference via variational inference based on an efficient expectation maximization algorithm. In particular, we leverage graph convolutional networks (GCNs) to encode the posterior distribution during variational inference and update the parameters of GCNs (E-step) and the weights of knowledge rules in MLN (M-step) iteratively. We conduct extensive experiments on different datasets and show that CARE achieves significantly higher certified robustness compared with the state-of-the-art baselines. We additionally conducted different ablation studies to demonstrate the empirical robustness of CARE and the effectiveness of different knowledge integration.


翻译:尽管深层神经网络(DNN)最近取得了巨大的进步,但它们往往很容易受到对抗性攻击。我们进行了密集的研究努力,以提高DNN的稳健性;然而,大多数经验性防御可以再次进行适应性攻击,理论上经认证的稳健性有限,特别是在大型数据集方面。对于DNN来说,这种脆弱性的一个潜在根源是,尽管它们表现出了强烈的直观性,但它们缺乏作出可靠和可靠的预测的推理能力。在本文中,我们的目标是将域级知识整合起来,以便能够与推理范式进行有力的学习。特别是,我们建议用推理性管道(CARE)进行可靠的可靠学习(CARE),其中包括学习部分和推理性部分。具体地说,我们使用一套标准DNNNNNNN的稳健健性防御性防御性防御性防御性防御性防御性防御性防御性防御力,具体地说,我们使用一套标准性DNNNNN值作为学习的学习组成部分的学习部分。我们利用了不同的预测性图理学模型来进行更强的推理理学。我们所理解的推理性推理性推理性推理的准确性推理,我们用的是MLNRN的精确值的精确值的精确值的精确值的精确性研究, 以显示的精确性判断性测测测测测测测测测测值的精确性测值的精确性测值的精确性测值的精确度, 以显示的精确性测测测测测算法的精确度为根据的精确性测测测算法的精确性测测测测测测测测测算性测测测测测测测测测测测测测测测测测测测测测测的精确性, 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员