Human conversations can evolve in many different ways, creating challenges for automatic understanding and summarization. Goal-oriented conversations often have meaningful sub-dialogue structure, but it can be highly domain-dependent. This work introduces an unsupervised approach to learning hierarchical conversation structure, including turn and sub-dialogue segment labels, corresponding roughly to dialogue acts and sub-tasks, respectively. The decoded structure is shown to be useful in enhancing neural models of language for three conversation-level understanding tasks. Further, the learned finite-state sub-dialogue network is made interpretable through automatic summarization.
翻译:人类对话可以以多种不同方式演变,为自动理解和总结带来挑战。以目标为导向的对话往往具有有意义的次对话结构,但高度依赖领域。这项工作引入了一种不受监督的学习等级对话结构的方法,包括交替和次对话部分的标签,大致上分别与对话行为和次任务相对应。解码结构在加强三种对话层面理解任务的语言神经模式方面很有用。此外,学习的有限状态次对话网络可以通过自动汇总来解释。