In this paper, we consider the problem of learning prediction models for spatiotemporal physical processes driven by unknown partial differential equations (PDEs). We propose a deep learning framework that learns the underlying dynamics and predicts its evolution using sparsely distributed data sites. Deep learning has shown promising results in modeling physical dynamics in recent years. However, most of the existing deep learning methods for modeling physical dynamics either focus on solving known PDEs or require data in a dense grid when the governing PDEs are unknown. In contrast, our method focuses on learning prediction models for unknown PDE-driven dynamics only from sparsely observed data. The proposed method is spatial dimension-independent and geometrically flexible. We demonstrate our method in the forecasting task for the two-dimensional wave equation and the Burgers-Fisher equation in multiple geometries with different boundary conditions, and the ten-dimensional heat equation.
翻译:在本文中,我们考虑了由未知部分差异方程式驱动的时空物理过程的学习预测模型问题。我们提出了一个深层次学习框架,以学习基础动态学,并使用分散的数据站预测其演变情况。深层次学习显示近年来在物理动态建模方面取得的可喜成果。然而,现有的物理动态建模的深层次学习方法大多侧重于解决已知的PDE,或者在管辖的PDE未知时要求在一个密集的网格中提供数据。相反,我们的方法侧重于学习仅来自很少观测到的数据的未知PDE驱动动力学的预测模型。拟议的方法是空间维度独立和几何性灵活。我们在二维波方程式预测任务中展示了我们的方法,在具有不同边界条件的多个地理特征和十维热方程式中展示了布尔格斯-纤维方程式等式的预测任务。