Sparse Bayesian learning models are typically used for prediction in datasets with significantly greater number of covariates than observations. Such models often take a reproducing kernel Hilbert space (RKHS) approach to carry out the task of prediction and can be implemented using either proper or improper priors. In this article we show that a few sparse Bayesian learning models in the literature, when implemented using improper priors, lead to improper posteriors.
翻译:普通的Bayesian学习模式通常用于数据集中的预测,其共变数比观测多得多,这类模式往往采用复制核心Hilbert空间(RKHS)的方法来完成预测任务,并且可以使用适当或不适当的前科加以执行。在本篇文章中,我们表明,文献中少数的Bayesian学习模式,如果使用不适当的前科实施,会导致不适当的后科。