The design of methods for inference from time sequences has traditionally relied on statistical models that describe the relation between a latent desired sequence and the observed one. A broad family of model-based algorithms have been derived to carry out inference at controllable complexity using recursive computations over the factor graph representing the underlying distribution. An alternative model-agnostic approach utilizes machine learning (ML) methods. Here we propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences. In the proposed approach, neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence, rather than the complete inference task. By exploiting stationary properties of this distribution, the resulting approach can be applied to sequences of varying temporal duration. Learned factor graph can be realized using compact neural networks that are trainable using small training sets, or alternatively, be used to improve upon existing deep inference systems. We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data, and can be applied to sequences of different lengths. Our experimental results demonstrate the ability of the proposed learned factor graphs to learn to carry out accurate inference from small training sets for sleep stage detection using the Sleep-EDF dataset, as well as for symbol detection in digital communications with unknown channels.


翻译:从时间序列中推断方法的设计传统上依赖于描述潜在理想序列和观察到序列之间关系的统计模型。根据模型算法的广泛组合得出了一系列基于模型的算法,以便利用代表基本分布的系数图的递归计算,在可控制的复杂性中进行推断。另一种模型-不可知性方法利用机器学习(ML)方法。我们在这里提出了一个框架,将基于模型的算法和数据驱动的 ML 工具结合起来,用于固定时间序列。在拟议方法中,神经网络将分别学习描述时间序列分布情况的系数图的具体组成部分,而不是完整的推论任务。通过利用这种分布的固定特性,由此得出的方法可以适用于不同时间分布的系数图的顺序。学习系数图可以通过使用小型训练机能网络实现,或者利用这种网络改进现有的深层推论系统。我们根据学习的固定系数图提出一种推论,从标签式数据到完整的推导算,从而从标定的序列中学习合成产品方案,然后将我们所学的测得的沉积度能力应用到不同时间序列。我们所学的测得的沉积数据序列中,用我们所学的测得的测得的沉积数据序列。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
89+阅读 · 2020年12月2日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月19日
Arxiv
6+阅读 · 2020年12月8日
Arxiv
7+阅读 · 2019年5月31日
Arxiv
5+阅读 · 2018年12月18日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员