We introduce the framework of continuous-depth graph neural networks (GNNs). Neural graph differential equations (Neural GDEs) are formalized as the counterpart to GNNs where the input-output relationship is determined by a continuum of GNN layers, blending discrete topological structures and differential equations. The proposed framework is shown to be compatible with static GNN models and is extended to dynamic and stochastic settings through hybrid dynamical system theory. Here, Neural GDEs improve performance by exploiting the underlying dynamics geometry, further introducing the ability to accommodate irregularly sampled data. Results prove the effectiveness of the proposed models across applications, such as traffic forecasting or prediction in genetic regulatory networks.


翻译:我们引入了连续深度图形神经网络框架(GNNs),神经图形差异方程式(Neal GDEs)正式成为GNNs的对应方,输入-产出关系由GNN的连续层决定,混合离散的地形结构和差异方程式,拟议框架与静态GNN模型兼容,并通过混合动态系统理论扩展到动态和随机环境。此处,神经图形差异方程式通过利用基本动态几何方法改进性能,进一步引入不定期抽样数据的能力。结果证明拟议的模型在各种应用中的有效性,如交通预测或遗传监管网络的预测。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
150+阅读 · 2020年6月28日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Inductive Relation Prediction by Subgraph Reasoning
Arxiv
11+阅读 · 2020年2月12日
Arxiv
24+阅读 · 2018年10月24日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
图神经网络(Graph Neural Networks,GNN)综述
极市平台
104+阅读 · 2019年11月27日
Nature 一周论文导读 | 2019 年 2 月 21 日
科研圈
14+阅读 · 2019年3月3日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
自然语言处理(二)机器翻译 篇 (NLP: machine translation)
DeepLearning中文论坛
10+阅读 · 2015年7月1日
相关论文
Top
微信扫码咨询专知VIP会员