We present a novel approach to perform agglomeration of polygonal and polyhedral grids based on spatial indices. Agglomeration strategies are a key ingredient in polytopal methods for PDEs as they are used to generate (hierarchies of) computational grids from an initial grid. Spatial indices are specialized data structures that significantly accelerate queries involving spatial relationships in arbitrary space dimensions. We show how the construction of the R-tree spatial database of an arbitrary fine grid offers a natural and efficient agglomeration strategy with the following characteristics: i) the process is fully automated, robust, and dimension-independent, ii) it automatically produces a balanced and nested hierarchy of agglomerates, and iii) the shape of the agglomerates is tightly close to the respective axis aligned bounding boxes. Moreover, the R-tree approach provides a full hierarchy of nested agglomerates which permits fast query and allows for efficient geometric multigrid methods to be applied also to those cases where a hierarchy of grids is not present at construction time. We present several examples based on polygonal discontinuous Galerkin methods, confirming the effectiveness of our approach in the context of challenging three-dimensional geometries and the design of geometric multigrid preconditioners.
翻译:暂无翻译