We introduce a novel covariance estimator that exploits the heteroscedastic nature of financial time series by employing exponential weighted moving averages and shrinking the in-sample eigenvalues through cross-validation. Our estimator is model-agnostic in that we make no assumptions on the distribution of the random entries of the matrix or structure of the covariance matrix. Additionally, we show how Random Matrix Theory can provide guidance for automatic tuning of the hyperparameter which characterizes the time scale for the dynamics of the estimator. By attenuating the noise from both the cross-sectional and time-series dimensions, we empirically demonstrate the superiority of our estimator over competing estimators that are based on exponentially-weighted and uniformly-weighted covariance matrices.
翻译:我们引入了一个新颖的共同变量估计器,通过使用指数加权移动平均值和通过交叉校验缩小成像量值,来利用金融时序的异变性性。 我们的估算器是模型的不可知性, 因为我们没有对共变矩阵的矩阵或结构随机条目的分布做出任何假设。 此外, 我们展示随机矩阵理论如何为超参数的自动调整提供指导, 超参数是估测器动态时间尺度的特点。 通过减少跨部门和时间序列层面的噪音, 我们从经验上证明我们的估测器优于基于超重和统一加权共变异矩阵的相竞估计器。