In this paper, we mathematically construct wavelet eigenanalysis in high dimensions (Abry and Didier (2018a, 2018b)) by characterizing the scaling behavior of the eigenvalues of large wavelet random matrices. We assume that possibly non-Gaussian, finite-variance $p$-variate measurements are made of a low-dimensional $r$-variate ($r \ll p$) fractional stochastic process with non-canonical scaling coordinates and in the presence of additive high-dimensional noise. We show that the $r$ largest eigenvalues of the wavelet random matrices, when appropriately rescaled, converge to scale invariant functions in the high-dimensional limit. By contrast, the remaining $p-r$ eigenvalues remain bounded. In addition, we show that, up to a log transformation, the $r$ largest eigenvalues of wavelet random matrices exhibit asymptotically Gaussian distributions. We further show how the asymptotic and large-scale behavior of wavelet eigenvalues can be used to construct statistical inference methodology for a high-dimensional signal-plus-noise system.
翻译:在本文中,我们通过描述大型波盘随机矩阵的天值的缩放行为,从数学角度在高维(Abry和Didier,2018年a,2018年b)中构建波子元分析(Abry和Didier,2018年a,2018年b),对大波盘随机矩阵的天值的缩放行为进行定性。我们假设,可能非高空的微变差美元(美元/美元/美元/美元/美元/美元/美元/美元)的微量随机分析过程是用非天体缩放坐标和添加的高维噪音显示的微量分析过程。我们进一步显示,波盘随机矩阵随机矩阵的最大值($/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元/美元