We describe an unsupervised domain adaptation method for image content shift caused by viewpoint changes for a semantic segmentation task. Most existing methods perform domain alignment in a shared space and assume that the mapping from the aligned space to the output is transferable. However, the novel content induced by viewpoint changes may nullify such a space for effective alignments, thus resulting in negative adaptation. Our method works without aligning any statistics of the images between the two domains. Instead, it utilizes a view transformation network trained only on color images to hallucinate the semantic images for the target. Despite the lack of supervision, the view transformation network can still generalize to semantic images thanks to the inductive bias introduced by the attention mechanism. Furthermore, to resolve ambiguities in converting the semantic images to semantic labels, we treat the view transformation network as a functional representation of an unknown mapping implied by the color images and propose functional label hallucination to generate pseudo-labels in the target domain. Our method surpasses baselines built on state-of-the-art correspondence estimation and view synthesis methods. Moreover, it outperforms the state-of-the-art unsupervised domain adaptation methods that utilize self-training and adversarial domain alignment. Our code and dataset will be made publicly available.


翻译:我们描述的是一种未经监督的图像内容变化的域适应方法,该方法是由语义部分任务的观点变化引起的。大多数现有方法在共享空间中进行域对齐,并假定从对齐空间到输出的映射是可转让的。然而,由观点变化引起的新内容可能会使这种空间失去有效校正,从而导致负面的适应。我们的方法在两个域之间不协调图像的任何统计数据的情况下起作用。相反,它使用仅对颜色图像进行美化图像的视图转换网络,以给目标的语义图像带来幻觉。尽管缺乏监督,但视图转换网络仍然可以对语义图像进行概括化,因为关注机制引入了诱导性的偏差。此外,为了解决将语义图像转换为语义标志的模糊性,我们把观点转换网络视为一种由颜色图像隐含的未知映射图的功能性表示,并提出功能标签幻觉,以便在目标域内生成假标签。我们的方法超过了基于最新通信估计和查看合成方法的基线。此外,由于注意机制引入了状态-艺术对立的对域码,我们将使用公开的对域调方法。

0
下载
关闭预览

相关内容

【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
已删除
AI科技评论
4+阅读 · 2018年8月12日
VIP会员
相关VIP内容
【ECCV2020】EfficientFCN:语义分割中的整体引导解码器
专知会员服务
15+阅读 · 2020年8月23日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
弱监督语义分割最新方法资源列表
专知
9+阅读 · 2019年2月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
已删除
AI科技评论
4+阅读 · 2018年8月12日
Top
微信扫码咨询专知VIP会员