Nonlinear differential equations exhibit rich phenomena in many fields but are notoriously challenging to solve. Recently, Liu et al. [1] demonstrated the first efficient quantum algorithm for dissipative quadratic differential equations under the condition $R < 1$, where $R$ measures the ratio of nonlinearity to dissipation using the $\ell_2$ norm. Here we develop an efficient quantum algorithm based on [1] for reaction-diffusion equations, a class of nonlinear partial differential equations (PDEs). To achieve this, we improve upon the Carleman linearization approach introduced in [1] to obtain a faster convergence rate under the condition $R_D < 1$, where $R_D$ measures the ratio of nonlinearity to dissipation using the $\ell_{\infty}$ norm. Since $R_D$ is independent of the number of spatial grid points $n$ while $R$ increases with $n$, the criterion $R_D<1$ is significantly milder than $R<1$ for high-dimensional systems and can stay convergent under grid refinement for approximating PDEs. As applications of our quantum algorithm we consider the Fisher-KPP and Allen-Cahn equations, which have interpretations in classical physics. In particular, we show how to estimate the mean square kinetic energy in the solution by postprocessing the quantum state that encodes it to extract derivative information.
翻译:非线性差异方程式在许多领域都表现出丰富的现象,但显然难以解决。最近,Liu等人[1] 展示了在1美元 < 1美元的条件下,在条件下,为消散四分方方程式展示了第一个高效的量子算法,在条件下,1美元 < 1美元,美元美元用美元标准衡量非线性与消散之比。在这里,我们根据反应-扩散方程式的[1],即非线性部分方程式的类别(PDEs),开发了一个高效量子算法。为此,我们改进了[1]中采用的卡莱曼线性化方法,以在条件下获得更快的趋同率,在条件下,1美元 < 1美元 < 1美元, 在条件下, $R_D美元衡量非线性对消散之比。 由于美元是空间电网点的数量,而美元是美元增加的,因此, 美元标准 < 1美元比高维系统(R) < 1美元标准要大得多,并且可以保持在网格中进行趋一致的递模化的递模化法 。