Loading classical data into quantum registers is one of the most important primitives of quantum computing. While the complexity of preparing a generic quantum state is exponential in the number of qubits, in many practical tasks the state to prepare has a certain structure that allows for faster preparation. In this paper, we consider quantum states that can be efficiently represented by (reduced) decision diagrams, a versatile data structure for the representation and analysis of Boolean functions. We design an algorithm that utilises the structure of decision diagrams to prepare their associated quantum states. Our algorithm has a circuit complexity that is linear in the number of paths in the decision diagram. Numerical experiments show that our algorithm reduces the circuit complexity by up to 31.85\% compared to the state-of-the-art algorithm, when preparing generic $n$-qubit states with different degrees of non-zero amplitudes. Additionally, for states with sparse decision diagrams, including the initial state of the quantum Byzantine agreement protocol, our algorithm reduces the number of CNOTs by 86.61\% $\sim$ 99.9\%.
翻译:将古典数据装入量子登记册是量子计算中最重要的原始数据之一。 虽然编制通用量子状态的复杂性在量子数量上是指数化的, 但在许多实际任务中, 国家准备的量子状态具有某种结构, 能够更快地进行准备。 在本文件中, 我们考虑量子状态, 可以用( 减少的) 决策图来有效代表 Boulean 函数的表达和分析。 我们设计了一种算法, 利用决定图结构来准备相关的量子状态。 我们的算法具有电路复杂性, 在决定图的路径数中具有线性。 数值实验显示, 我们的算法在制作具有不同程度非零度的通用量子状态时, 将电路复杂度降低到31.85 ⁇, 与最先进的算法相比, 将电路复杂度降低到31.85 ⁇ 。 此外, 对于决策图稀少的州, 包括量子Byzantine协议的初始状态, 我们的算法将CNOT数量减少86. 61 $\ sim 99.9 。