This paper proposes new propagation rules on quantum codes in the entanglement-assisted and in quantum subsystem scenarios. The rules lead to new families of such quantum codes whose parameters are demonstrably optimal. To obtain the results, we devise tools to puncture and shorten codes in ways that ensure their Hermitian hulls have certain desirable properties. More specifically, we give a general framework to construct $k$-dimensional generalized Reed-Solomon codes whose Hermitian hulls are $(k-1)$-dimensional maximum distance separable codes.
翻译:本文提出了关于缠绕辅助和量子子系统情景中量子代码的新的传播规则。 这些规则导致此类量子代码的新组合,其参数明显是最佳的。 为了获得结果,我们设计了各种工具,以穿透和缩短代码,确保Hermitian船体具有某些可取的特性。 更具体地说,我们给出了一个总体框架,用于构建一个美元维通用Reed-Solomon代码,其Hermitian船体为(k-1)美元维面最大距离代码。