Large Language Models (LLMs) have made remarkable strides in various tasks. However, whether they are competitive few-shot solvers for information extraction (IE) tasks and surpass fine-tuned small Pre-trained Language Models (SLMs) remains an open problem. This paper aims to provide a thorough answer to this problem, and moreover, to explore an approach towards effective and economical IE systems that combine the strengths of LLMs and SLMs. Through extensive experiments on eight datasets across three IE tasks, we show that LLMs are not effective few-shot information extractors in general, given their unsatisfactory performance in most settings and the high latency and budget requirements. However, we demonstrate that LLMs can well complement SLMs and effectively solve hard samples that SLMs struggle with. Building on these findings, we propose an adaptive filter-then-rerank paradigm, in which SLMs act as filters and LLMs act as rerankers. By utilizing LLMs to rerank a small portion of difficult samples identified by SLMs, our preliminary system consistently achieves promising improvements (2.1% F1-gain on average) on various IE tasks, with acceptable cost of time and money.
翻译:大型语言模型(LLMS)在各种任务中取得了显著进步,然而,它们是否是信息提取(IE)任务的有竞争力的微粒解答器,而且超越了经过精细调整的小型预先培训语言模型(SLMs),仍然是一个尚未解决的问题。本文件旨在为这一问题提供一个彻底的答案,并探索一种将LLMS和可持续土地管理的优势结合起来的有效、经济的IE系统的方法。通过对三大IE任务中的八个数据集进行广泛的实验,我们表明,LLMS一般不是有效的微粒信息提取器,因为它们在大多数环境中的表现不尽如人意,而且具有较高的长期性和预算要求。然而,我们证明LLMS能够很好地补充可持续土地管理,并有效地解决SLMs难以解决的硬样品问题。基于这些发现,我们建议采用适应性的过滤式现时再入式模式,使LMS作为过滤器,LMs作为重新排位。我们利用LMS重新排列了可持续土地管理所查明的一小部分困难的样品,我们的初步系统在各种IE任务上不断取得有希望的改进(平均增加2.1%的F1)。</s>