Large Language Models (LLMs) have made remarkable strides in various tasks. However, whether they are competitive few-shot solvers for information extraction (IE) tasks and surpass fine-tuned small Pre-trained Language Models (SLMs) remains an open problem. This paper aims to provide a thorough answer to this problem, and moreover, to explore an approach towards effective and economical IE systems that combine the strengths of LLMs and SLMs. Through extensive experiments on eight datasets across three IE tasks, we show that LLMs are not effective few-shot information extractors in general, given their unsatisfactory performance in most settings and the high latency and budget requirements. However, we demonstrate that LLMs can well complement SLMs and effectively solve hard samples that SLMs struggle with. Building on these findings, we propose an adaptive filter-then-rerank paradigm, in which SLMs act as filters and LLMs act as rerankers. By utilizing LLMs to rerank a small portion of difficult samples identified by SLMs, our preliminary system consistently achieves promising improvements (2.1% F1-gain on average) on various IE tasks, with acceptable cost of time and money.


翻译:大型语言模型(LLMS)在各种任务中取得了显著进步,然而,它们是否是信息提取(IE)任务的有竞争力的微粒解答器,而且超越了经过精细调整的小型预先培训语言模型(SLMs),仍然是一个尚未解决的问题。本文件旨在为这一问题提供一个彻底的答案,并探索一种将LLMS和可持续土地管理的优势结合起来的有效、经济的IE系统的方法。通过对三大IE任务中的八个数据集进行广泛的实验,我们表明,LLMS一般不是有效的微粒信息提取器,因为它们在大多数环境中的表现不尽如人意,而且具有较高的长期性和预算要求。然而,我们证明LLMS能够很好地补充可持续土地管理,并有效地解决SLMs难以解决的硬样品问题。基于这些发现,我们建议采用适应性的过滤式现时再入式模式,使LMS作为过滤器,LMs作为重新排位。我们利用LMS重新排列了可持续土地管理所查明的一小部分困难的样品,我们的初步系统在各种IE任务上不断取得有希望的改进(平均增加2.1%的F1)。</s>

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
72+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月5日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员