Image-to-image translation has been revolutionized with GAN-based methods. However, existing methods lack the ability to preserve the identity of the source domain. As a result, synthesized images can often over-adapt to the reference domain, losing important structural characteristics and suffering from suboptimal visual quality. To solve these challenges, we propose a novel frequency domain image translation (FDIT) framework, exploiting frequency information for enhancing the image generation process. Our key idea is to decompose the image into low-frequency and high-frequency components, where the high-frequency feature captures object structure akin to the identity. Our training objective facilitates the preservation of frequency information in both pixel space and Fourier spectral space. We broadly evaluate FDIT across five large-scale datasets and multiple tasks including image translation and GAN inversion. Extensive experiments and ablations show that FDIT effectively preserves the identity of the source image, and produces photo-realistic images. FDIT establishes state-of-the-art performance, reducing the average FID score by 5.6% compared to the previous best method.


翻译:以GAN为基础的图像到图像翻译方法已经革命了。然而,现有的方法缺乏保存源域特性的能力。因此,合成图像往往会过度适应参考域,失去重要的结构特征,并受到不理想的视觉质量的影响。为了应对这些挑战,我们提议了一个新型频域图像翻译框架,利用频率信息来增强图像生成过程。我们的关键想法是将图像分解成低频和高频组件,高频特征捕获对象的结构与身份相似。我们的培训目标有利于保存像素空间和Fourier光谱空间的频率信息。我们广泛评价FDIT在五个大型数据集和多个任务中的频率信息,包括图像翻译和GAN的转换。广泛的实验和推理表明FDIT有效地维护了源图像的特性,并制作了摄影现实图像。FDIT建立了最先进的性能,比以往的最佳方法减少了5.6 % 。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员