Interactive simulation of ultrasound imaging greatly facilitates sonography training. Although ray-tracing based methods have shown promising results, obtaining realistic images requires substantial modeling effort and manual parameter tuning. In addition, current techniques still result in a significant appearance gap between simulated images and real clinical scans. Herein we introduce a novel content-preserving image translation framework (ConPres) to bridge this appearance gap, while maintaining the simulated anatomical layout. We achieve this goal by leveraging both simulated images with semantic segmentations and unpaired in-vivo ultrasound scans. Our framework is based on recent contrastive unpaired translation techniques and we propose a regularization approach by learning an auxiliary segmentation-to-real image translation task, which encourages the disentanglement of content and style. In addition, we extend the generator to be class-conditional, which enables the incorporation of additional losses, in particular a cyclic consistency loss, to further improve the translation quality. Qualitative and quantitative comparisons against state-of-the-art unpaired translation methods demonstrate the superiority of our proposed framework.
翻译:超声成像的交互式模拟极大地促进了声学培训。虽然以射线追踪为基础的方法已经显示出有希望的结果,但获取现实的图像需要大量的建模努力和人工参数调整。此外,当前技术仍然导致模拟图像和真正的临床扫描之间的巨大外观差距。我们在此引入了一个新颖的内容保存图像翻译框架(ConPres)以弥合这一外观差距,同时保持模拟解剖版面。我们通过利用模拟图像与语义分解和未经校正超声波扫描的模拟图像来实现这一目标。我们的框架以最近的对比性非光化翻译技术为基础,我们提出一种正规化方法,学习辅助的分解到真实图像翻译任务,这鼓励了内容和风格的分解。此外,我们扩大了生成器的等级性,从而能够纳入更多的损失,特别是环形一致性损失,从而进一步提高翻译质量。我们提出的框架的定性和定量比较与状态-艺术非声学翻译方法相比,显示了我们提议的框架的优越性。