Most image completion methods produce only one result for each masked input, although there may be many reasonable possibilities. In this paper, we present an approach for pluralistic image completion - the task of generating multiple and diverse plausible solutions for image completion. A major challenge faced by learning-based approaches is that usually only one ground truth training instance per label. As such, sampling from conditional VAEs still leads to minimal diversity. To overcome this, we propose a novel and probabilistically principled framework with two parallel paths. One is a reconstructive path that extends the VAE through a latent space that covers all partial images with different mask sizes, and imposes priors that adapt to the number of pixels. The other is a generative path for which the conditional prior is coupled to distributions obtained in the reconstructive path. Both are supported by GANs. We also introduce a new short+long term attention layer that exploits distant relations among decoder and encoder features, improving appearance consistency. When tested on datasets with buildings (Paris), faces (CelebAHQ), and natural images (ImageNet), our method not only generated higher-quality completion results, but also with multiple and diverse plausible outputs.


翻译:多数图像完成方法只为每个掩蔽输入产生一个结果, 虽然可能有很多合理的可能性。 在本文中, 我们展示了多元图像完成方法, 即为图像完成提供多种且多样的可信解决方案。 基于学习的方法所面临的一个重大挑战是每个标签通常只有一个地面真相培训实例。 因此, 从有条件的 VAE 取样仍然导致最小多样性。 为了克服这一点, 我们提出了一个具有两个平行路径的新颖且概率原则框架。 一个是重建路径, 通过覆盖所有部分图像且面罩大小不同的潜在空间扩展 VAE, 并强制设置适应像素数目的前缀。 另一个是基因化路径, 之前的附加条件与重建路径的分布相连接。 两者都得到 GANs 的支持。 我们还引入了一个新的短长的注意层, 利用解析器和编码特性之间的遥远关系, 提高外观一致性。 在与建筑物( 巴黎 ) 、 面部( CelebAHQ ) 和自然图像( ImageNet) 测试时, 我们的方法不仅产生高质量产出, 而且是多种和高质量产出。

8
下载
关闭预览

相关内容

开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2019年10月31日
Arxiv
13+阅读 · 2019年1月26日
Arxiv
11+阅读 · 2018年5月13日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
7+阅读 · 2018年1月21日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员