The neural ordinary differential equation (neural ODE) model has attracted increasing attention in time series analysis for its capability to process irregular time steps, i.e., data are not observed over equally-spaced time intervals. In multi-dimensional time series analysis, a task is to conduct evolutionary subspace clustering, aiming at clustering temporal data according to their evolving low-dimensional subspace structures. Many existing methods can only process time series with regular time steps while time series are unevenly sampled in many situations such as missing data. In this paper, we propose a neural ODE model for evolutionary subspace clustering to overcome this limitation and a new objective function with subspace self-expressiveness constraint is introduced. We demonstrate that this method can not only interpolate data at any time step for the evolutionary subspace clustering task, but also achieve higher accuracy than other state-of-the-art evolutionary subspace clustering methods. Both synthetic and real-world data are used to illustrate the efficacy of our proposed method.
翻译:神经普通差分方程式(Neal ode)模型在时间序列分析中引起越来越多的注意,因为它能够处理不规则的时间步骤,即没有在平空时间间隔内观测数据。在多维时间序列分析中,一项任务是进行进化子空间集群,目的是根据不断演变的低维次空间结构将时间数据分组。许多现有方法只能用定期时间步骤处理时间序列,而时间序列在缺少数据等许多情况下抽样不均。在本文件中,我们提出了一个进化子空间组合模型,以克服这一限制,并引入一个带有子空间自我表达性限制的新目标功能。我们证明,这种方法不仅可以在进化子空间集群任务的任何阶段内对数据进行内插,而且还能达到比其他最先进的进化子空间集群方法更高的精确度。我们使用合成数据和现实世界数据来说明我们拟议方法的功效。