We propose two procedures to detect a change in the mean of high-dimensional online data. One is based on a max-type U-statistic and another is based on a sum-type U-statistic. Theoretical properties of the two procedures are explored in the high dimensional setting. More precisely, we derive their average run lengths (ARLs) when there is no change point, and expected detection delays (EDDs) when there is a change point. Accuracy of the theoretical results is confirmed by simulation studies. The practical use of the proposed procedures is demonstrated by detecting an abrupt change in PM2.5 concentrations. The current study attempts to extend the results of the CUSUM and Shiryayev-Roberts procedures previously established in the univariate setting.


翻译:我们建议采用两种程序来检测高维在线数据平均值的变化:一种是基于最高型U-统计,另一种是基于总型U-统计。两种程序的理论属性在高维环境中得到探讨。更准确地说,当没有变化点时,我们得出平均运行长度(ARLs),而在出现变化点时,预计检测延迟(EDDs)。模拟研究证实了理论结果的准确性。通过发现PM2.5浓度的突然变化,可以证明拟议程序的实际使用。当前研究试图扩大以前在单体环境中建立的CUSUM和Shilyayev-Roberts程序的结果。

0
下载
关闭预览

相关内容

商业数据分析,39页ppt
专知会员服务
161+阅读 · 2020年6月2日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月27日
VIP会员
相关VIP内容
相关资讯
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Soft-NMS – Improving Object Detection With One Line of Code
统计学习与视觉计算组
6+阅读 · 2018年3月30日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员