Diffusion models, widely used in image generation, rely on iterative refinement to generate images from noise. Understanding this data evolution is important for model development and interpretability, yet challenging due to its high-dimensional, iterative nature. Prior works often focus on static or instance-level analyses, missing the iterative and holistic aspects of the generative path. While dimensionality reduction can visualize image evolution for few instances, it does preserve the iterative structure. To address these gaps, we introduce EvolvED, a method that presents a holistic view of the iterative generative process in diffusion models. EvolvED goes beyond instance exploration by leveraging predefined research questions to streamline generative space exploration. Tailored prompts aligned with these questions are used to extract intermediate images, preserving iterative context. Targeted feature extractors trace the evolution of key image attribute evolution, addressing the complexity of high-dimensional outputs. Central to EvolvED is a novel evolutionary embedding algorithm that encodes iterative steps while maintaining semantic relations. It enhances the visualization of data evolution by clustering semantically similar elements within each iteration with t-SNE, grouping elements by iteration, and aligning an instance's elements across iterations. We present rectilinear and radial layouts to represent iterations and support exploration. We apply EvolvED to diffusion models like GLIDE and Stable Diffusion, demonstrating its ability to provide valuable insights into the generative process.
翻译:暂无翻译